
Ethereum
virtual currency,
state machines,

and programmable money

A Computer Science perspective

https://it.wikipedia.org/wiki/File:Ethereum_logo_translucent.svg

Who I am

Pietro De Nicolao
pd@bendingspoons.com

Software engineering lead
Algorithmic Trading

(2019 – current)

What I work on

Algorithmic trading
systems

Focus: 👇
the cryptocurrency market(s)

mailto:pd@bendingspoons.com
https://commons.wikimedia.org/wiki/File:Cryptocurrency_logos.jpg

What is
Ethereum?

👉 digital currency (Ether / ETH)

● store and transfer value (like Bitcoin)
● (costly) payment method

👉 deterministic, distributed state
machine; “programmable money”

👉 a platform of decentralized
applications (DApps)

https://it.wikipedia.org/wiki/File:Ethereum_logo_translucent.svg

🤖 The state machine

🧱 Transactions are arranged in “blocks”

The Ethereum Virtual Machine (EVM) executes the transactions to compute the next logical state.

⛓ Chain of blocks = “blockchain”

 The state is distributed globally
 State changes are governed by the rule of consensus

🤝 Consensus on the Ethereum network

 Anyone can operate an Ethereum node.

 Each Ethereum node keeps track of the current
world state (= confirmed blocks).

 Gossip protocol to broadcast the unconfirmed
transactions, to be included in a future block.

🥵 Proof of work: some Ethereum nodes (the
“miners”) spend CPU time to “mine” the next block of
transactions. Only one wins.

✅ All the other nodes can verify that the miner
correctly signed a block.
Consensus is established:

● current block’s transactions are added to world state
● miners start to work on the next block

Ethereum is robust to:

► Partitioning
► Bad actors

(“Smart contract”)

 person
🤖 program

(“Wallet”)

mutable

immutable

EOAs vs. contract account

Externally Owned Account Contract Account

Public address ✅ ✅
Private key ✅ ❌
Ether balance ✅ ✅
Code (immutable) ❌ ✅
Data storage (mutable) ❌ ✅
Can initiate transactions ✅ ❌

public address (EOA)

Ether balance

Transactions

public address (contract)

EVM bytecode (compiled)
of the contract

balance (contract)

Ethereum’s high-level
programming languages:

 Solidity
 Vyper

https://docs.soliditylang.org/en/v0.8.14/
https://vyper.readthedocs.io/en/stable/

Function types

Pure: does not read nor write the state

View: does not write the state

Public: can be called by transactions
👉 from other contracts
👉 from EOAs directly

Private: can be called only by the contract itself

Payable: the function can accept Ether

API of a smart contract: functions callable from EOAs or other contracts.

Smart contract transaction: a simplified example

EOA: 0x43b2af1…

Balance = 1.4 Ether

Transaction

Value = 0.5 Ether

Data = call f(a=127, b=0x23e2a2v…)

Signature with senderʼs private key

< more data here, see later >

Contract: 0x75b2df1…

function f(a int8, b address) external payable;

function g(y int32) view;

Balance = 102.7 Ether

signs
sends Ether & data

- transfer Ether
- modify internal state
- call other contracts

The EVM as a Turing machine

 Ethereum contract code is Turing-complete: it can implement any computable function.

⚠ This makes Ethereum a general-purpose global distributed computer.

 Therefore, the Ethereum Virtual Machine is equivalent to a Universal Turing Machine:

Input tape: transactions, containing data + Ether

Code: the smart contracts’ function(s) to be executed

State: the set of all smart contracts’ states and account balances

Output tape (“side effect”): transfer of Ether across accounts

All good, but…
WILL IT HALT?

Problem #1: smart contract termination ⚡
In computability theory, the halting problem is the problem of determining, from a
description of an arbitrary computer program and an input, whether the program
will finish running, or continue to run forever.

Alan Turing proved in 1936 that a general algorithm to solve the halting problem for all
possible program-input pairs cannot exist.

👉 The EVM is Turing-complete

⚠ If a smart contract runs forever, the EVM gets stuck (= unusable!)

❌ No way to detect and reject not-halting (or expensive) smart contract calls!

Gas ⛽
Ethereum’s solution: an economic disincentive

How to avoid that users abuse the EVM with long-running programs?
How does Ethereum guarantee termination?

👉 Each EVM opcode costs gas to execute

 Users set a gas limit in each transaction

💸 The more code you run, the more you pay (up to the gas limit!)

⛔ Gas limit is reached → transaction is terminated and reverted

💸 Only effect: the user pays the gas limit in full.

Problem #2: replay attacks
What is stopping people from replaying a transaction?

1. Alice signs a valid transaction:
“Send 0.5 Ether to Bob”

2. The transaction is executed.

3. Bob reads the transaction from the public
blockchain and resends it to the network.

4. Profit?

Transaction A

Send 0.5 Ether to Bob
Digitally signed with Aliceʼs private key

Alice

Bob

Transaction A

Send 0.5 Ether to Bob
Digitally signed with Aliceʼs private key

Transaction A

Send 0.5 Ether to Bob
Digitally signed with Aliceʼs private key

Transaction A

Send 0.5 Ether to Bob
Digitally signed with Aliceʼs private key

Transaction A

Send 0.5 Ether to Bob
Digitally signed with Aliceʼs private key

Transaction A

Send 0.5 Ether to Bob
Digitally signed with Aliceʼs private key

Transaction A

Send 0.5 Ether to Bob
Digitally signed with Aliceʼs private key

Nonce: A scalar value equal to the number of transactions sent from this address

World state

Externally owned account (EOA)

Address

code hash

storage hash

balance

nonce

Account state

Transaction

nonce

gasPrice

gasLimit

to

value

v, r, s

init or data

transferred ether

160 bits address

contract creation or message call

private key signature

max units of gas

ether per gas units

per-account increasing integer

Nonce: A scalar value equal to the number of transactions sent from this address

(Alice)

Smart contract example: ERC20 Tokens
USDC, USDT, SHIB, DAI, … how to create a new token (“coin”) on Ethereum?
You must implement the ERC20 interface.

Note: Ether (the native currency) is not an ERC20 token! (Wrapped Ether (WETH) is.)

interface IERC20 {

 /* Returns the amount of tokens in existence. */

 function totalSupply() external view returns (uint256);

 /* Returns the amount of tokens owned by `account`. */

 function balanceOf(address account) external view returns (uint256);

 /* Moves `amount` tokens from the caller's account to `to`.

 * Returns a boolean value indicating whether the operation succeeded. */

 function transfer(address to, uint256 amount) external returns (bool);

 /* … more functions not shown here for brevity */

}

https://eips.ethereum.org/EIPS/eip-20

⚙ ERC20 reference implementation (link)
contract ERC20 is IERC20 {

 mapping(address => uint256) private _balances;

 uint256 private _totalSupply;

 string private _name;

 string private _symbol;

 function balanceOf(address account) public view virtual override returns (uint256) {

 return _balances[account];

 }

 function transfer(address to, uint256 amount) public virtual override returns (bool) {

 address owner = msg.sender;

 uint256 fromBalance = _balances[owner];

 require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");

 _balances[from] = fromBalance - amount;

 _balances[to] += amount;

 return true;

 }

 /* … more implementation …*

}

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

🚨 ERC20 issues

Ether is needed To transfer ERC20 tokens, you need to pay
transaction fees—using Ether.

Multiple implementations Feature and bug. ERC20 is a mere interface:
tokens can extend it.

Vulnerable implementations Custom implementation may have exploitable
bugs → assets at risk!

Malicious implementations Increase totalSupply() (inflationary token)
 transfer() to “wrong” destination
 “Blacklisted”, frozen addresses
 Backdoors, rug pulls, “owner” accounts…

ERC20 tokens are just code.
⚠ Careful when interacting with unknown / untrusted ERC20 tokens on-chain!

For the curious:
USDT (Tether) contract code

https://etherscan.io/address/0xdac17f958d2ee523a2206206994597c13d831ec7#code

DApp example: Uniswap
https://app.uniswap.org/

DApp = Decentralized App

Wallet + web frontend + smart contract(s)

Uniswap: a decentralized exchange (DEX).

Swap ERC20 tokens without a central authority.
Smart contracts execute the swaps directly on the
users’ wallets.

https://app.uniswap.org/

🎮 DApp example: play-to-earn in the metaverse

Metaverse: a universal, immersive virtual world, facilitated by the use of AR and VR headsets.

Non-Fungible Token (ERC 721): a smart contract
implementing a “unique”, collectible, transferable item.

Examples: lottery tickets, art, memes, event passes

Play-to-earn game: a MMORPG where users exchange
economic value through the blockchain.

⚠ Faster, cheaper blockchains are typically used in place of Ethereum.

Game “currency”
(coins, resources)

ERC-20 token (fungible)

Collectibles
(equipment, armor, cards, medals…)

ERC-721 token (non-fungible)

https://ethereum.org/it/developers/docs/standards/tokens/erc-721/

Source

DeFi

=

Decentralized
Finance

https://thedefiant.io/defi-projects-map/

Conclusion

📦

● Ethereum: a distributed FSM
● Consensus mechanism
● Accounts and contracts
● Transactions
● Termination and gas fees
● Replay attacks and nonces
● ERC20 tokens
● Applications

References

📚

❖ Antonopoulos, Wood (2018)
Mastering Ethereum

❖ Takenobu Tani (2018)
Ethereum EVM Illustrated

❖ Luca Boiardi (2022)
Ethereum, cos’è e come
funziona

❖ Vitalik Buterin (2014)
Ethereum Whitepaper

https://github.com/ethereumbook/ethereumbook
https://github.com/takenobu-hs/ethereum-evm-illustrated
https://www.youtube.com/watch?v=egBdVX1H1wQ
https://www.youtube.com/watch?v=egBdVX1H1wQ
https://ethereum.org/en/whitepaper/

We’re hiring!
https://bndspn.com/Uni-careers

Contact me: pd@bendingspoons.com

https://bndspn.com/Uni-careers
mailto:pd@bendingspoons.com

